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ABSTRACT
The Additive Increase and Multiplicative Decrease (AIMD) algo-
rithm is the Internet’s de-facto protocol for capacity sharing and
congestion avoidance. We present an analysis of the AIMD algo-
rithm here in EV charging problem in terms of its parameters and
their impact on the average charging power. We show a closed-
form expression for the average final share of AIMD, propose a
counterpart algorithm for EV charging, and validate the expression
by testing the algorithm under different varying parameters.

CCS CONCEPTS
•Hardware→Power networks; Smart grid;Power networks;
Smart grid; • Networks → Network resources allocation; Network
control algorithms.
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1 INTRODUCTION
With the integration of new end-nodes in today’s electric grid such
as distributed energy sources (DER) and electric vehicles (EV), the
grid is transforming into a more dynamic nature. Especially, mass
penetration of EVs into the distribution systems will cause adverse
effects because of the overlap of peak loading hours and EVs’ ar-
rival times [2]. This necessitates the need for smart and attentive
control and coordination of these end-nodes. This kind of demand
side management of resources is a very popular engineering prob-
lem that was also heavily studied especially in the development
of today’s Internet [6]. The Additive Increase and Multiplicative
Decrease (AIMD) algorithm [1] was proposed as a congestion avoid-
ance solution and has been used as the Internert’s de-facto control
method.

The proven success of the AIMD algorithm in the Internet in-
spired many in the power area to adapt the algorithm to power
network problems [4, 5, 7, 8]. A recent study [3] demonstrated
that the local grid frequency can also be utilized in a decentralized
AIMD algorithm to control grid-connected microgrids. An analysis
is presented in [10] to show howAIMD operates in terms of fairness
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Figure 1: Capacity sharew (n) vs. timew/AIMD in action asn tends to infinity.

and voltage violations once the voltage thresholds are properly set.
Further, in [9], a method is proposed on how to set these voltage
thresholds dynamically by means of statistical analysis. Studies
mostly implemented AIMD in a centralized manner. However, a
communication network with a heavily centralized control scheme
is a costly investment and not scalable. It is also highly vulnerable in
terms of cyber security. To that end, a fully autonomous operation
based on local measurements will be of great value since it will
significantly reduce the cost and complexity of the system [9, 10].

In this paper, we propose an AIMD based EV charging algorithm
and its decentralized congestion detection mechanism. Then, we
present its parameters and investigate their impacts on the final user
share. Finally, we evaluate the results and briefly discuss how we
can utilize them to develop a better distributed control algorithm.

2 AIMD MODELING AND EV CHARGING
AIMD has two modes, namely additive increase (AI) and multi-
plicative decrease (MD). It linearly increases the user share (w) by
α > 0 in AI phase. When capacity is reached,w is scaled down by
0 < β ≤ 1 for MD phase. This is formalized as follows:

wi (t + 1) =

{
wi (t) + αi if there is no congestion
wi (t) × βi if congestion occurs

(1)

After analytical derivation, the steady-state average value of user
sharewi is found as:

w̃∗
i = αi

(1 + βi )
2(1 − βi )pi

d (2)

where d is the average time between two successive capacity events
and pi is the probability that agent i decreases its share at the
capacity event. This is demonstrated in Fig. 1. Any increase in the
additive parameter will also increase the final share. d is the period
of congestion; thus, the final share also tends to increase as the
time between two successive congestion events gets longer. On the
other hand, the final share has a quadratic relationship with β since
it is inversely proportional to (1 − βi ). As β approaches one, the
denominator gets smaller, and the final share increases. Finally, the
probability of taking action in the MD phase also affects the final
share. As this probability gets smaller, the agents will ignore the
congestion events, and causes an increase in the final share.
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The counterpart algorithm of AIMD for EV charging is shown
in Alg. 1. The congestion is detected based on whether the local
voltageVc (t) is greater than the thresholdVth specific to each node.
Vth is calculated from voltage statistics and updated at every update
period Tu , and its value corresponds to a chosen left tail quantile
(δ ) of voltage distribution as depicted in Fig. 2.

Fig. 3 shows a typical waveform of voltage, current and voltage
threshold when AIMD is in action. The algorithm checks the voltage
at algorithm operation intervals (Ta ), e.g., every 10 sec.

3 CASE STUDY
To validate (2), we tested a case scenario with different charging
parameters (α , β ,δ ,p) on a simplified grid model. We used 15 EVs,
and set the nominal values of the parameters as: α = 1, β = 0.5,
p = 1, δ = 0.25, and EV arrival time mean = 17h53m. The overall
average charging currents resulting from each parameter test (while
others staying the same) are shown in Fig4.

We see that the increase parameter α greatly impacts the average
charging current since it is directly proportional to the final share.
The decrease parameter β has a rather quadratic relationship since
β appears both in nominator as (1 + β) and also denominator as
(1 − β) in (2). Choosing β closer to 1 results in a more dramatic
change and higher average charging current, however longer tran-
sient time since it directly determines the speed of convergence. p
parameter is inversely proportional to the final share as seen from
its hyperbolic curve. The results clearly show that δ has also an
inverse relationship with the average final share just as the decision
probability p.

Algorithm 1: Proposed AIMD algorithm.
Input: Charger voltage and current: Vc (t), Ic (t)
Output: Charger current command Ic (t + 1)

if Vc (t) > Vth (t) then
Ic (t + 1) = Ic (t) + α(t)

else
if p ≥ rand(1) then
Ic (t + 1) = β(t) × Ic (t)

end if
end if

Figure 2: Calculating the voltage threshold from the voltage distribution.

Figure 3: Voltage, voltage threshold and charging current.

Figure 4: Average charging current with changing α , changing β , changing δ ,
and changing p .

Figure 5: Average charging currents when α = 4 for 5th and 10th EVs and
α = 1 for others.

4 DISCUSSION AND CONCLUSION
Our validation and analyses show that AIMD-based EV charging is
promising and can be fine tuned for close-to-optimal decentralized
operation. We showed that four of the AIMD algorithm parameters
(α , β , p, and δ ) directly impact the average final share, and thus
can be used for tuning the control algorithm. The system operator,
for example, can adjust the AIMD parameters in favor of or against
a user to reward or penalize it depending on a predefined policy.
Fig. 5 demonstrates such a case where 5th and 10th EVs have a
higher α value that resulted in higher average charging current
compared to other vehicles.

This analysis showed us that our algorithm is parameter depen-
dent. It learns an operating point for itself around the measured
voltage level, and thus does not have any global information re-
garding the overall capacity. This is an expected behaviour from
a decentralized control approach which is heavily dependent on
local information. Our algorithm does not communicate at all with
anywhere else, and is therefore, completely decentralized. This
makes it inefficient in utilizing the available capacity, however it
still serves as a straightforward, plug-and-play, baseline control
framework that, when properly tuned, will converge to a stable
operating point thanks to its AIMD-based structure.

5 FUTUREWORK
In future studies, we will look into hybrid solutions where we can
combine the local knowledge with some global information to have
a more dynamic and efficient control over grid-connected power
electronics systems such as EVs and photo-voltaic (PV) cells.
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