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ABSTRACT

This study proposes a new distributed control strategy for the
grid integration of plug-in electric vehicles. The proposed
strategy consists of two stages: (i) an offline process to de-
termine an aggregated reference charge power level based on
mobility estimation and base load profile, and (ii) a real-time
operation based on the distributed control approach. The con-
trol algorithm manages PEV charge load profiles in order to
flatten the residential distribution transformer loading while
ensuring the desired state of the charge (SOC) level. The
proposed algorithm is tested on real distribution transformer
loading data, and compared with heuristic charging scenarios.
The numerical results are presented to demonstrate the impact
of the proposed algorithm.

Index Terms— Plug-in electric vehicle, grid integration,
peak shaving, smart charging, distributed control.

1. INTRODUCTION
Growing number of plug-in electric vehicles (PEVs) in the
market is becoming a matter of concern due to the utility grid
integration, especially at the distribution level [1–3]. The in-
tegration of PEVs into the distribution system with an unco-
ordinated fashion at high market rates increases peak loading
on line/transformer, energy losses, voltage deviations, and the
need for network reinforcements [1, 2, 4, 5]. When consider-
ing a cost-efficient solution for both the utility grid and PEV
user, it is more convenient to shift PEV charging loads to off-
peak hours where the demand load and the electricity price
is lower. However, shifting PEV loads with uncoordinated
charging strategies imposes a non-uniform load profile, re-
sulting in undesired peak loads at off-peak hours due to the
charging many PEVs simultaneously [6].

The peak loads caused by PEV charging can be restrained
either by unidirectional PEV charging management [4, 6] or
by discharging PEV batteries into the grid using vehicle-to-
grid (V2G) technology [7, 8]. V2G requires special hardware
allowing bidirectional power transfer, which is currently not
available in the most of the market vehicles yet. Also, the
lack of an established electric vehicle grid integration (EVGI)

protocol and market agreement make it difficult to provide
field deployment for mass V2G technologies [9]. Therefore,
coordinated unidirectional charging becomes prominent for
large-scale penetration of PEVs into the grid in the near-term.

Coordinated charging manages PEV charging loads effec-
tively to mitigate largely undesirable impacts of high penetra-
tion of PEVs in the grid [4,5]. It enables a charging flexibility
which can be used to provide grid services such as peak shav-
ing [6], valley filling [10], and minimizing charging cost [11].
It can also be used to integrate higher share of intermittent
renewable energy sources into the grid [12]. Centralized [13,
14] and distributed (decentralized) [10,11,13,15,16] charging
strategies have been proposed in the literature. While charg-
ing profile for each PEV in the centralized strategy is man-
aged by a central operator which aims to achieve an optimal
aggregated charging goal, the distributed strategy allows each
PEV to determine its own charging profile which may not al-
ways result in optimal aggregated charging regime [11]. The
distributed approach has gained more attraction in the litera-
ture because of its higher flexibility to the PEV user and eas-
ier field implementation [10, 11, 13, 15, 16]. However, issues
in terms of better utility grid coordination while considering
PEV user convenience at the same time is still an undergoing
research topic.

This study contributes to the integration of PEVs into the
distribution system by proposing a distributed smart charging
algorithm. The proposed algorithm minimizes the peak load-
ing on the distribution system, fills the night-valley as much
as possible while ensuring the desired state of charge (SOC)
level, i.e. full-charging, at departure time. In contrast to the
charging at constant rated power proposed in [10, 13, 15, 16],
charging process for each PEV is performed at variable power
rates to achieve better valley filling performance. To achieve
this, a new two-stage control approach is presented. First, an
offline process is proposed to determine the charge reference
which is estimated using PEV mobility data and base load
profile. In the second phase of the control mechanism, a real-
time operation based on the distributed control approach is
carried out. The algorithm not only provides an optimal ag-
gregated load profile based on the objective of minimizing its
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Fig. 1. EVGI architecture in the distribution system.

Table 1. Types of PEVs and Their Specifications
Vehicle Make Vehicle Battery Size EV Range Max. charge
and Model Type (kWh) (km) power (kW)
BMW i3 EV 18 110 7.4
Chevy Volt PHEV 10 50 3.3
Nissan Leaf EV 24 150 6.6
Renault Zoe EV 22 100 7.4
Tesla Model S EV 85 350 10

variance, but also utilizes the advantages of distributed strat-
egy, i.e. retaining PEV user private information and avoiding
the communication and computation overhead. The proposed
algorithm is tested on real distribution transformer loading
data, and compared with heuristic charging scenarios. The
performance of the algorithm is quantified in terms of vari-
ance and mean square error metrics.

2. SYSTEM DESCRIPTION AND MODELING
In this study, system modeling is done in MATLAB Simulink
through off-line and time-based simulation environments.
The described system architecture is demonstrated in Fig. 1.
The components of the system model are individually de-
scribed in the below sections.

2.1. Transportation Mobility Modeling
Daily home arrival/departure time and trip distance data of
10 personal vehicles have been collected for a year to con-
stitute a realistic mobility model [17]. The collected data his-
tograms are quite similar to a Gaussian distribution with mean
and standard deviations of (7h47, 0h23), (19h55, 1h40), and
(39.5 km, 15.8 km) for home departure time, arrival time, and
daily trip distance distributions, respectively. Five different
PEVs listed in Table 1 are randomly selected in the model.
The transportation model runs off-line and generates SOC
values for individual PEVs at the time of grid connection.

2.2. Charging Station Model
Charging station (electric vehicle supply equipment- EVSE)
model includes a user behavior model which is classified as
follows:

i-)Standard charging: PEV charges at rated on-board
charging power when connected to the grid. No control over
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Fig. 2. Structure of proposed smart charging algorithm.

charging is possible. Charging ends when the PEV is fully
charged.

ii-)Smart charging: PEV starts charging with a smart
charging profile during the time when the system loading
is below a certain reference value. Charging ends in the
morning departure time with fully charged battery.

The EVSE communicates with the control center using
a wireless/wired set-up. Vehicle - station communication is
employed through the low-level and high-level communica-
tion over the control pilot. The related high-level vehicle
information can be transferred between the EVSE and the
PEV through power line communication over the control pilot
pin utilizing standards such as ISO15118 or Homeplug Green
PHY [18].

2.3. On-board Charger and Battery System Model
The PEV component models are developed to simulate the
AC power exchange between the vehicle and the grid. It
includes the following information for different vehicle ven-
dors: on-board charger power rating, operating efficiency, im-
plementation of constant-current (CC) and constant-voltage
(CV) charging, and cell-based battery system design.

3. DISTRIBUTED SMART CHARGING
ALGORITHM

The proposed control approach consists of two phases, of-
fline and real-time processing, as shown in Fig. 2. During the
offline process, a charge reference called preferred operation
point (POP) is determined. In the second phase, a real-time
operation based on the distributed control approach is carried
out. The following operations are performed when each PEV
is connected to the grid. (i) The grid operator sends the valley
power profile to ith PEV connected to the grid; (ii) the PEV
independently determines its own charging profile depending
on the valley energy, its SOC, and morning departure time,
and then sends it to the grid operator; (iii) the grid operator
updates valley power and send it to (i+ 1)th PEV connected
to the grid. The algorithm repeats the second and third steps
whenever a new PEV connects to the grid.

Offline operation: The output of this stage is to estimate
a POP value as a reference for the aggregated charging of all
PEVs. For this to be achieved, the total number of PEVs in
the region and their types (makes/models) are known ahead.
Then, the energy for each PEV to be fully charged before the



time of departure is calculated. To do so, a mobility data set
(daily distances taken, home arrival and departure times) is
generated based on the pre-determined Gaussian characteris-
tics described in Section II. Later, by considering the battery
capacities of each PEV and the distances taken by that PEV,
required energy for an SOC level of 100% is computed. As
a final step, POP value is decided based on the total required
energy in an iterative manner. Valley energy is defined as fol-
lows:

Evalley =

∫ tdept,ave

tarr,1

Pvalley(t)dt, (1)

where,

Pvalley(t) =

{
POP − Pbase(t), if POP − Pbase(t) > 0
0, otherwise

(2)
and tarr,1 is the time when the first PEV arrives home and
tdept,ave is the average of the departure times of all PEVs.
The valley energy is compared to the required energy and
POP value is increased/decreased accordingly. Iterations are
stopped when a convergence criteria is satisfied. To have a
good representation of a global POP value, the above proce-
dure is repeated 100 times and the mean of the all POP values
are used as the final forecasted POP value.

Online operation: Once the POP value is calculated, the
only information to be transferred to PEVs to determine the
charging profile for each PEV is the Pvalley(t) which is cal-
culated using (2). To determine the charging power of a PEV
at time t, the valley energy for that PEV is calculated first:

Evalley,i(t) =

∫ tdept,i

t

Pvalley(τ)dτ, tarr,i < t < tdept,i

(3)
where, tarr,i is the arrival time and tdept,i is the departure
time of the ith PEV. Then, a multiplication factor, α(t), is
computed as:

αi(t) =


Erated,i × (1− SOCi(t))

Evalley,i(t)
, if tarr,i < t < tdept,i

0, otherwise
(4)

where Erated,i is the rated battery capacity of the ith PEV.
Finally the charging power for the ith PEV at time t is

Pch,i(t) = αi(t)× Pvalley(t). (5)

In this study, the charging control signals for each PEV are
compliant with the IEC 61851 standard which imposes that
the charging current has to be at least 6 A [19]. For this pur-
pose, if Pch,i in the above equation results in a value below
the possible minimum charging power (1.32kW at 220 V),
then it is updated as follows:

Pch,i(t) =

{
0 kW, if 0 < Pch,i < 0.66 kW
1.32 kW if 0.66 kW < Pch,i < 1.32 kW

(6)

Fig. 3. Daily average active power demands for four months.

At the end of time t, SOCi(t) is updated accordingly and the
above procedure is repeated between (4) and (6) to find the
charging power for the same vehicle at time t + 1. Having
determined the Pch,i(t) for the whole time period when the
ith PEV is parked, this information is sent to the grid, and
Pvalley(t) is updated. That is:

Pvalley(t) = Pvalley(t) − Pch,i(t), 0h < t < 24h (7)

The charging power for subsequent PEV connected to the grid
is determined based on this new value of the valley power.

Highlights of the proposed control approach: The control
approach has several advantages in terms of computational
complexity, communication overhead, and practicability for
real-time application, resulting from the distributed control
approach. Since the charging calculations are distributed to
PEVs, the computational overhead is avoided. Moreover, the
charging profile for each PEV is determined in a non-iterative
manner that decreases the communication rate. It is calcu-
lated only once when the PEV connects to the grid and it does
not need to be updated depending on the other PEVs arriving
later than that PEV. From PEV user privacy perspective, the
control approach preserves user private data since PEVs re-
port only charging profiles. The solutions of the charging pro-
file expressions do not require an extensive calculation. The
charging expressions can be easily solved by an embedded
system in each PEV/EVSE. Therefore, the control approach
is quite appropriate for field implementation.

4. CASE STUDIES AND RESULTS

The case studies are developed using the distribution network
of city of Ankara in Turkey. A three-phase distribution trans-
former of 34.5/0.4 kV, 1000 kVA, with 985 residential cus-
tomers are used. The daily average active power profile dur-
ing four months are shown in Fig. 3. Among the available
months, November is chosen as the forecasted daily power
consumption. The triple tariff regions (1, 2, and 3) shown in
the figure correspond to night (10 pm - 6 am), day-time (6 am
- 5 pm) and peak-time (5 pm - 10 pm) hours, respectively.
The proof of concept is demonstrated for the PEV penetra-
tion level of 10%. This corresponds roughly to 100 vehicles
for 985 customers in the neighborhood assuming each house-
hold owns one vehicle.



Fig. 4. Result of 10% PEV penetration for Case 1.

Fig. 5. Result of 10% PEV penetration for Case 2.

Fig. 6. Result of 10% PEV penetration for Case 3.

Three different cases have been tested to evaluate the
algorithm performance. Fig. 4 shows the loading result of
Case 1 where all PEVs are charged at their rated charging
power as they arrive without any coordination. As shown, the
peak of the aggregated load has considerably increased as op-
posed to base loading (almost two-fold). Meanwhile, Fig. 5
shows the result of Case 2 where only half of the PEVs are
charged in coordination with the smart charging profile. The
POP value for this case is calculated off-line to be 177 kW.
Finally, Fig. 6 shows the result of Case 3 where all of the
PEVs obey coordinated charging. The POP value for this
case is 220 kW. As shown, there is no increase on the base
peak power loading of the transformer. In order to evaluate
and compare the operation results, variance is used as the
base metric. Minimizing the variance shows how well the
algorithm smooths the aggregated load profile helping for the
better utilization of the power generation assets. The variance
is calculated as follows:

v =
1

tdept,ave − tarr,ave

tdept,ave∑
t=tarr,ave

(Paggr(t)− µ)2, (8)

where Paggr(t) and µ are the aggregated and the average

Table 2. Different Test Cases
Case # Standard charging Smart charging MSE∗ Variance†

PEVs [%] PEVs [%] (kW)2 (kW)2

1 100 0 N/A 12405
2 50 50 17.4 3304
3 0 100 1.9 51.7
∗Calculated between 1:00 am and 7:00 am.

†Calculated between 7:55 pm and 7:47 am next day.

loading profiles (kW), respectively. The calculations are done
in one-minute intervals during the time horizon when vehicles
are parked and grid connected at home. The average arrival
and departure times of the vehicle set are tarr,ave=7:55 pm
and tdept,ave=7:47 am. According to Table 2, the case with
the lowest variance (Case 3) returns the best overall utiliza-
tion of the generation sources without causing high demand
charges for the utility operator. In contrast, Case 1 returns the
worst utilization of the assets. As the number of PEVs par-
ticipating into smart charging service increases, the variance
of the aggregated loading decreases. For all three cases, PEV
user convenience is met by providing a fully charged PEV
battery in the morning departure.

As a second measure, mean-square-error (MSE) is also
used. It is a measure of how close the aggregated loading
profile is to the expected charge reference (POP value). This
metric can be used when a PEV aggregator promises to pro-
vide a load consumption service to the utility grid in a prede-
fined time interval, i.e. t1=1:00 am to t2=7:00 am. The MSE
can be computed as follows:

MSE =
1

t2 − t1

t2∑
t=t1

(Paggr(t)− POP )2. (9)

The algorithm performance is better for Case 3 compared to
Case 2 in the MSE calculation as shown in Table 2. Overall,
the proposed control algorithm handles EVGI impact on the
distribution system for different user choices successfully and
provides a smooth and constant loading profile by selecting a
corresponding charging reference to be followed by the PEVs.

5. CONCLUSION
A smart charging algorithm to smoothen the load profile on
the residential distribution transformer has been presented in
this paper. A new distributed-based smart charging control
algorithm has been developed by addressing PEV user conve-
nience and practicability in real-time applications. The pro-
posed algorithm avoids computational overhead, decreases
the communication rate, and retains PEV user private data.
The algorithm has been tested on a real residential trans-
former data with heuristic charging scenarios. It is shown
that the proposed algorithm reduces the peak loading result-
ing from the mass PEV charging, and performs a significant
valley-filling performance without extensive centralized con-
troller requirements.
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