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Abstract—Electric vehicles (EVs) are transforming the
modern transportation and energy systems. However, due
to increasing battery and charger capacities with long
charging times, potential adverse effects on distribution
grid will become a crucial problem. Safe and efficient
operation of the grid along with a fast, convenient, and
fair charging strategy is an important research tackle. In
this paper, we analyze the additive increase-multiplicative
decrease (AIMD) method used to solve a similar problem
occurred in the early days of the Internet and apply it
to EV charging using only local measurements. Then, we
present a detailed analysis to understand the relationship
between distance and charging power in a distribution
network to better address the fairness in the proposed
AIMD EV charging algorithm.

I. INTRODUCTION

Electric vehicles (EVs) are becoming more popular
all across the globe with a variety of benefits such as
reduced CO2 emissions, efficient utilization of battery
energy, and lower maintenance requirements. Their mass
adoption is finally becoming a mere reality. With a
growing EV market, the mass penetration of EVs into the
utility grid will result in critical issues such as increased
peak loading, increased losses, and voltage imbalance or
deviations, and need for additional network reinforce-
ments. Therefore, advanced and practical interaction
methods between plug-in electric vehicles (PEVs) and
the utility grid need to be developed. These methods
should satisfy maximum charging rate for each vehicle
and preserve charging fairness among them while assur-
ing the grid reliability and distribution power quality.

EV grid integration studies in the literature discusses
two broad operations: i) unidirectional charging, and ii)
vehicle-to-grid (V2G) power transfer. Algorithms pro-
pose grid load leveling, peak shaving, voltage regulation,
and reactive power compensation [1]–[3]. Some studies
use neural networks taking advantage of the smart grid

metering and communication [4]. The developed charg-
ing algorithms mostly rely on some sort of centralized
information exchange [5]. However, these approaches
require centralized server to detect congestion in the
network and do not fully address the fairness among
users. Alternatively, using local measurements in a de-
centralized manner, studies propose such a voltage-based
feedback controller for EV charging with a preset voltage
reference value for all nodes [6], [7].

In literature, among many others, Additive Increase
and Multiplicative Decrease (AIMD) algorithm adopted
from the Internet congestion control have been proposed
for EV charging, where charging power is adjusted in
accordance with the congestion status of the distribution
grid [8], [9]. This idea was further enhanced by taking
power system constraints into account [10]. A distributed
AIMD solution using local voltages is discussed in [11],
where it suggests that voltage thresholds are obtained
from historical voltage data. In [12], an improved de-
centralized AIMD algorithm is proposed where voltage
threshold values are calculated by power flow analysis.
A general framework and comparison among different
charging strategies are also presented [13], [14].

As presented in the above literature studies, decentral-
ized operation of an EV charging algorithm fundamen-
tally relies on the measured and preset threshold voltage
values. This makes it even more important to understand
the effects of any system parameters on these values and
discover useful relationships among them. In this study,
we present a detailed analysis regarding the relationships
among distance vs. voltage and power in a simplified
distribution grid model which is inspired by an IEEE 37-
node model [15]. Then, using the results of this analysis,
we propose a method that ensures fairness in an AIMD
based charging algorithm. Lastly, we compare it with
different charging scenarios and discuss the outcomes of
these cases.
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Algorithm 1 Proposed AIMD algorithm.
Input: Charger voltage and current: Vc(t), Ic(t)
Output: Charger current command Ic(t+ 1)

if Vc(t) > Vth(t) then
Ic(t+ 1) = Ic(t) + α(t)

else
Ic(t+ 1) = Ic(t) × β(t)

end if

II. AIMD-BASED EV CHARGING CONTROL

A. Baseline AIMD algorithm

In this study, we build from the baseline AIMD
algorithm shown in Algorithm 1 for EV charging. This
algorithm either increases or decreases the charging
current, thus charging power, depending on the measured
local node voltage, Vc(t), which can be assumed as an
indicator for a congestion/overloading event occurring in
the power grid. The amount of increase, which is deter-
mined by α(t) coefficient, is done additively whereas that
of decrease is a multiplicative factor, β(t) as commonly
implemented in computer networks [16]. Further, AIMD
algorithm is stability proven and can be implemented
without instability concerns in a network [17].

Here the threshold value Vth(t) is the most crucial
to the algorithm as it serves as a congestion indicator.
However, voltage level at a certain point on the grid
may vary depending not only on the grid structure
and distribution line lengths but also on the overall
system load at any time. Choosing wrong threshold
may cause the violation of fairness among customers as
well as ineffective utilization of power. Understanding
the relationship among these system parameters and
developing insight on how to choose voltage thresholds
are essential to ensure fair and effective operation of the
AIMD algorithm.

B. Deriving Voltage Thresholds

1) A Simplified Voltage-Distance Relation: We use a
single mainline type of distribution system, simplified by
considering an IEEE 37-node test feeder [15]. The model
is further simplified into a DC circuit (due to resistive
behavior of the distribution system) as shown in Fig. 1.
Distribution lines are modeled as resistors and loads are
modeled as controlled current sources. The parameters
are as follows:

• V1, V2, V3..., Vn are the main feeder voltages.
• Vi1, Vi2, Vi3..., Vik are the ith lateral feeder voltages.
• R1, R2, R3..., Rn are distribution lines of the main

feeder.
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Figure 1: Baseline distribution system model.
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Figure 2: Repeated pattern in the distribution system
model.

• Ri1, Ri2, Ri3..., Rik are distribution lines of the ith
lateral feeder.

• Ii1, Ii2, Ii3..., Iik are the currents drawn from the ith
lateral feeder.

This grid model can be considered as a nested system
that repeats itself. The repeated pattern is shown in
Fig. 2. To solve this repeated system for node voltages,
each node voltage is expressed in terms of other system
variables such that ith node voltage can be written as:

Vi=V0 − (I1 + I2 + · · · + In)R1 − (I2 + · · · + In)R2

−(Ii + · · · + In)Ri (1)

where n is the total number of nodes.
As seen in (1), the voltage of any node in the grid

is determined by the distribution line parameters and all
the currents drawn at all nodes at any time. This results



Figure 3: Relationship between voltage and distance.

in a complicated system without a simple analytic equa-
tion. However, one can formulate voltage vs. distance
relationship when the following assumptions hold true:

• All currents are the same I1=I2= I3=· · ·=In=I
• All distribution line segment lengths and parameters

are the same s.t.: R1=R2=R3= · · · = Rn=ρL/A.
where ρ is line resistivity (Ω ·m), L is line segment
length (m), A is line cross-sectional area (m2) of the
wire. Voltage can, then, be expressed as a function of
distance for ith node:

V (D) = V0 −
Iρ

A
(n+

1

2
)D +

Iρ

A

D2

2L
(2)

where D = Li (i being any node number). Only with
the presented assumptions, it was possible to simplify (1)
into a quadratic function of a single variable (distance)
as presented in (2). The result is shown in Fig. 3. This
curve shows that even when simplified, the relationship
between voltage and distance is not linear due to the
topology of the grid. However, (2) helps us to under-
stand how the voltage signature changes throughout the
network when a voltage-based controller is to be used
such as an AIMD algorithm.

2) Maximally Fair Voltage Thresholds: After under-
standing the system voltage dynamics in Fig. 2 using
(1), we can calculate the active power Pi absorbed by
the ith node as:

Pi=V0 Ii−Ii
{

(I1+I2+· · ·+In)R1+(I2+· · ·+ In)R2

+ · · · +(Ii +· · ·+ In)Ri

}
(3)

To dedicate the same amount of power P to each node
(i.e., to maximize fairness), one has to solve this non-
linear system of equations for a specific set of currents.
This operation inherently needs a significant computa-
tional power and takes a lot of time to complete for
large n. A decent and rational simplification can be made
by assuming an average current in each power equation
which is the same as the corresponding node current.

This assumption greatly simplifies the problem, signif-
icantly decreases the computation time and holds well
enough as long as current values, thus node voltages,
are close to one another. This is a safe approximation
since, in a typical distribution system, voltages do not
deviate so much from its nominal value. This leads to
an independent second order equation of single variable
for Pi:

Pi=V0Ii − I2i

{
nR1+(n−1)R2+· · ·+(n−i+1)Ri

}
(4)

Let Ai be the ith element of the vector A, which is
the product of the following two matrices:

A =


n 0 0 · · · 0
n n− 1 0 · · · 0
...

...
...

. . .
...

n n− 1 n− 2 · · · 1


nxn

×


R1

R2
...
Rn


nx1

(5)

Then, the power for the ith node (4) can rewritten as:

Pi = V0Ii − I2i Ai (6)

For a specific power Pi = P , we obtain a simple
second order equation that we need to solve for the ith

current:
−I2i Ai + V0Ii − P = 0 (7)

For (7) to have real roots, the following must hold:

Ai ≤
V 2
0

4P
(8)

As P increases in (8), the right hand side decreases
and it gets more likely that the inequality breaks down.
Therefore, P has to be restricted. The maximum possible
P is determined by the minimum allowable threshold
voltage Vthr at the last node. From (1), the current that
results in this threshold voltage can approximately be
found by again assuming an average current that is the
same as the corresponding node current:

In =
V0 − Vthr

An
(9)

Then, P is calculated as:

P = In · Vthr (10)

and substituted into (7) to solve for current Ii required
at each node to distribute the same power P . If these
currents are used to solve the system in Fig. 2, then the
voltages, currents and power consumed by each node for
a 15-node system will be as in Fig. 4. When this solution
is expanded for the nested system described in Fig. 1,
the lateral feeder voltages and end-node voltages along
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Figure 4: (a) Main feeder voltages and currents wrt
distance, (b) Main feeder power wrt distance.
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Figure 5: (a) Lateral feeder voltages and currents, (b)
lateral feeder power, (c) end-node voltages and currents,
and (d) end-node powers.

with the associated powers will be as in Fig. 5. As shown
in Figs. 4(b), 5(b), and 5(d), the same amount of power
can be allocated to each node regardless of the distance
by adjusting the currents. We can conclude that the node
voltages resulted from these currents can be used as the
voltage thresholds for our AIMD algorithm to maximize
fairness between EVs.

III. SIMULATION RESULTS

To test the ability of the proposed method to determine
the voltage thresholds in the AIMD algorithm, we run a
simulation case study. The simulation is conducted for
the grid model in Fig. 1 with the following parameters:

• Number of main feeder nodes = 15
• Number of lateral feeder nodes = 4 × 15 = 60
• Number of end nodes/customers = 4 × 60 = 240

Each lateral node has four inner end-nodes which
simulates four houses connected to a common pole
transformer in a neighborhood. EV model types, battery
SOCs, arrival and departure times, and household load
consumption are chosen to be the same to clearly see
the effects of the distance and how much the proposed
method compensates for it to result in a fair sharing of
power.

The voltage results for four nodes at increasing dis-
tances and power results for all distances are obtained
for the following cases and shown in Fig. 6:

• Case 1: Charging without any control
• Case 2: AIMD control with fixed Vth
• Case 3: AIMD control with distance-dependant Vth

using home and EV loads
• Case 4: AIMD control with distance-dependant Vth

using only EV loads
In Case 1, all the EVs are charged with the maxi-

mum possible power, which is the same to all, causing
significant voltage drops that increase with the distance
to the substation as shown in Fig. 6(a)-(b). In Case 2,
the AIMD algorithm with a fixed voltage threshold is
implemented at all nodes and this causes an unfair
share of the total charging power which decays with the
distance as shown in Fig. 6(c)-(d). In Case 3, distance
depended voltage thresholds result in a fairer allocation
of power, and thus, equal charging durations all across
the grid as shown in Fig. 6(e)-(f). Lastly in Case 4 as
shown in Fig. 6(g)-(h), we see an improvement in the
fair share of the charging powers when the household
loads are eliminated during the charging time. This again
shows us that any load in the system can contribute to
the unpredicted nature of the grid and violate fairness.
Note that the oscillation seen in the results are not a
sign for instability. Rather, as noted before, AIMD is
stability-proven, and the EV chargers oscillate dynami-
cally around their equilibrim point.

IV. CONCLUSIONS AND FUTURE WORK

Voltage vs. distance relationship in a distribution net-
work is highly non-linear due to different node currents
and line distances. With the presented method, one
can allocate almost same power to all end-nodes under
certain assumptions. Voltage levels after allocation of
this power can be used as voltage threshold in an AIMD
algorithm.

However, the presented voltage threshold derivation
methodology requires availability of the complete system
information (e.g., the distribution line lengths) at a
central location. Thus, as is, it is not a fully decentralized
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Figure 6: Voltages and charging power of the four
selected end-nodes located at different distances to the
substation (a)-(b) Case 1, (c)-(d) Case 2, (e)-(f) Case 3,
(g)-(h) Case 4

method. Complementary future work will be to develop
techniques that can learn the location of a node with
respect to the substation using local measurements and
their signatures. Further, considering a more generalized
system where each node may occasionally provide power
(e.g., as a renewable energy source) in addition to using
it for EV charging will be studied as well. A smart power
management in the light of this work enpowered with a
local learning mechanism that applies to any other power
consuming device will also be investigated in the future.
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